Introduction
The astounding pace, at which the field of information technology is growing, has the whole world agog with expectations of its extensive benefits. Developments in the field of information technology have paved the way for reforms in the current educational system. These developments facilitate a learning process interwoven with the local culture. This paper focuses on “Localization of Education through Computers”.

Education and Computerization: An evolving paradigm
Information Technology has opened the doors to a rich and complex human centred environment for learning. The paradigm has moved from passive or rote learning to self directed learning. Interactive experiences enable effortless learning through more personalized, dynamic information delivery systems. The new generation has to be equipped to face the challenges of the information era. The World Wide Web and growth in the field of multimedia have made knowledge dissemination instantaneous and available to the masses. Advanced technology information systems, networks, terrestrial and satellite transmissions, distributed processing and virtual reality in an educational context can be used effectively to further enhance our current educational framework. Online Education and web-based delivery systems provide a new substitute for the traditional teaching models. Most of these systems are under testing and the effectiveness of learning achieved through these systems is yet to be assessed. These systems need a level of personalization through the use of multilingual, multicultural model for content delivery further enhanced by the current developments in the field of computer graphics, simulation, artificial intelligence and its applications including intelligent tutoring system and computer assisted language learning.

Localization of Educational Content
Indigenous knowledge is unique to every culture and society. It is embedded in community practices, institutions, relationships and rituals. It is a part of our every day life. This indigenous knowledge is an under utilized resource in the educational process.

Thus localization in our context can be defined as “Learning from indigenous knowledge”. Learning through association with familiar concepts is the key to effective education. Vygotsky stresses that active construction of meaning occurs in a social context. Learning can only be achieved through a customized model of information delivery suited to each learner’s profile. Howard Gardner’s Multiple Intelligence can be applied to build an optimal model of information delivery for the learner. This paper discusses the relevant technological and social framework to achieve this “localization of knowledge”.

Edunet: New Reformed Educational Framework
A new reformed infrastructure for education will serve as a means to support our goal of reconstruction and development of the educational system. The conventional educational system
is unable to cope with the rapidly changing information needs of the education domain. Stagnation seeps into the system at various levels. The vast knowledge base available in foreign languages cannot reach the masses. It cannot be understood and used easily unless it is customised to local needs. The educators are also unequipped to handle the rapid pace at which the information world is moving. If the current model of teaching is to be sustained, continuous input to the educator’s knowledge and a continuous collaborative learning mechanism must be available to them. The new educational framework which we call ‘edunet’ has information hosts distributed across the region. This infrastructure is an enhancement to the conventional education system and is “not a substitution”. It handles the need of localized knowledge storage and retrieval for effective content building. An up-to-date information repository can assist the educators in staying upbeat with the ever-changing information world. Success of this system depends on the active participation of the educators. Educators are content builders for the system and the effective content users. A technical backbone to assist the building and use of this information repository is as explained below.

Technological Backbone for edunet

The primary technological component of this “localized educational framework” is a distributed standardized content repository, which caters to the needs of the region as a whole. This repository can be used as the content feed to a framework for content rendering. This repository also acts as a medium for information exchange. It can be used by intelligent content renderers for more personalized content delivery. The distributed content repository can be implemented using the existing database and markup technologies. It is built over the TCP/IP stack to capture the distributed nature of the application. This content repository can be considered as a distributed database of content units and content containers spread over a multi dimensional educational domain. The dimensions of the educational domain include time, language, culture, level, category and others. The Content unit is the atomic element, which corresponds to an information unit. A content unit could be a visual element or a textual element or semantic information for multi-lingual and multi-language support. A content container is an aggregate semantic structure containing other containers or content units. A content container is a collection of content units to form meaningful semantic structures. It can be classified into several types. An aggregate container can contain a collection of relevant content units and/or other containers that complete its representation. A sequence container can contain an ordered collection of content unit and/or container to map to an automated lesson trail.

A standardized content interface supports optimised handling of various query operations on the repository. Content builder provides the necessary client for building the content repository.

Content renderer forms the engine that captures the user preferences and uses the query results to form more customized content. It is a framework that uses the content repository as its content feed. It is primarily responsible for static or dynamic content building. It uses the distributed static content repository data, the semantic information captured in the containers and content units and the end user’s profile information containing his preferences and behaviour history to build a more personalized content for effective delivery.

Impact of Localization

The essence of “localization” lies in building this technical backbone to reform the educational system. Foreign contents can be modified to local context in a standardized format by local people to suit local needs. Leveraging the indigenous knowledge to improve the impact and sustainability of cross-cultural shared knowledge can boost information exchange. Localization of
educational content can eliminate the disparities between the developed and developing countries. Passive import and consumption of predetermined contents should be replaced by an active and significant participation in the creation, production and formulation of localized contents.

Social Implications
Resistance to change and apprehension of the effectiveness of the new model of education is the main obstacle in the optimal use of computer as a powerful medium for education. Effectiveness of automated content and the learning curve associated with their optimal use have been the primary constraints in the use of computer based systems in education. An open initiative from the academic community supported by a nationwide policy can bridge the gap between education and computer technology.

References

- Alka Irani *A Unified Model for Concept Structuring*, Ph.D. BITS Pilani, 1995
- Bruce Joyce/Marsha Weil *Models of Teaching* Prentice-Hall India, 1985
- Chris J Date *Introduction to Database Systems*, Addison Wesley, 1981
- Chris J Date *Relational Database Writings* (1991-1994) Addison Wesley,
- Codd E F *Extending the Database Relational Model to Capture More Meaning* ACM transactions on Database Systems, Vol 4, No 4, Dec 1979
- Schank R.C. *Reading and Understanding Lawrence Erbaum Ass, New Jersey*, 1982
- http://www.w3c.org (A website for tutorials on computer-related topics)